Dental microwear reveals mammal-like chewing in the neoceratopsian dinosaur Leptoceratops gracilis
نویسنده
چکیده
Extensive oral processing of food through dental occlusion and orbital mandibular movement is often cited as a uniquely mammalian trait that contributed to their evolutionary success. Save for mandibular translation, these adaptations are not seen in extant archosaurs or lepidosaurs. In contrast, some ornithischian dinosaurs show evidence of precise dental occlusion, habitual intraoral trituration and complex jaw motion. To date, however, a robust understanding of the diversity of jaw mechanics within non-avian dinosaurs, and its comparison with other vertebrates, remains unrealized. Large dental batteries, well-developed dental wear facets, and robust jaws suggests that neoceratopsian (horned) dinosaurs were capable chewers. But, biomechanical analyses have assumed a relatively simple, scissor-like (orthal) jaw mechanism for these animals. New analyses of dental microwear, presented here, show curvilinear striations on the teeth of Leptoceratops. These features indicate a rostral to caudal orbital motion of the mandible during chewing. A rostrocaudal mandibular orbit is seen in multituberculates, haramiyid allotherians, and some rodents, and its identification in Leptoceratops gracilis is the first evidence of complex, mammal-like chewing in a ceratopsian dinosaur. The term circumpalinal is here proposed to distinguish this new style of chewing from other models of ceratopsian mastication that also involve a palinal component. This previously unrecognized complexity in dinosaurian jaw mechanics indicates that some neoceratopsian dinosaurs achieved a mammalian level of masticatory efficiency through novel adaptive solutions.
منابع مشابه
The Functional and Palaeoecological Implications of Tooth Morphology and Wear for the Megaherbivorous Dinosaurs from the Dinosaur Park Formation (Upper Campanian) of Alberta, Canada
Megaherbivorous dinosaurs were exceptionally diverse on the Late Cretaceous island continent of Laramidia, and a growing body of evidence suggests that this diversity was facilitated by dietary niche partitioning. We test this hypothesis using the fossil megaherbivore assemblage from the Dinosaur Park Formation (upper Campanian) of Alberta as a model. Comparative tooth morphology and wear, incl...
متن کاملTechnical note: Dental microwear textures of "Phase I" and "Phase II" facets.
The power stroke of mastication has been traditionally divided into two parts, one which precedes centric occlusion, and the other which follows it-"Phase I" and "Phase II," respectively. Recent studies of primate mastication have called into question the role of Phase II in food processing, as they have found little muscle activity or accompanying bone strain following centric occlusion. That ...
متن کاملA psittacosaurid-like basal neoceratopsian from the Upper Cretaceous of central China and its implications for basal ceratopsian evolution
Psittacosauridae (parrot-beaked dinosaurs) represents the first major radiation of ceratopsians (horned dinosaurs). However, psittacosaurids are divergent from the general morphology found in other ceratopsians, and this has resulted in their uncertain systematic position among ceratopsians. Here we describe a new basal neoceratopsian dinosaur, Mosaiceratops azumai gen. et sp. nov. based on a p...
متن کاملDental Microwear and Diet of the Plio-Pleistocene Hominin Paranthropus boisei
The Plio-Pleistocene hominin Paranthropus boisei had enormous, flat, thickly enameled cheek teeth, a robust cranium and mandible, and inferred massive, powerful chewing muscles. This specialized morphology, which earned P. boisei the nickname "Nutcracker Man", suggests that this hominin could have consumed very mechanically challenging foods. It has been recently argued, however, that specializ...
متن کاملMicrowear and morphology: functional relationships between human dental microwear and the mandible.
Microscopic pits and scratches form on teeth during chewing, but the extent to which their formation is influenced by mandibular morphology is unknown. Digitized micrographs of the base of facet nine of the first, second, and third mandibular molar were used to record microwear features from an archaeological sample of modern humans recovered from Semna South in northern Sudan (n=38; 100 BC to ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 4 شماره
صفحات -
تاریخ انتشار 2016